

§ 16.4/5 Flux and Surface Integrals

Recall: the Divergence Theorem:

$$\iiint_V \operatorname{Div} \vec{F} \, dV = \iint_S \vec{F} \cdot \vec{n} \, dS$$

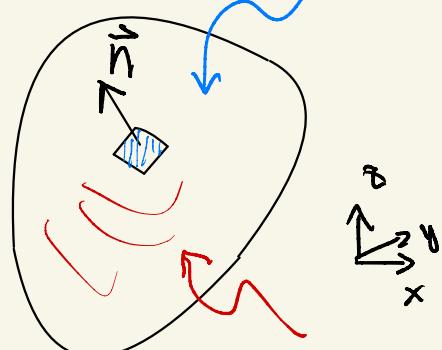
Flux of \vec{F} thru
the closed boundary δ

Recall that Stokes Theorem reads

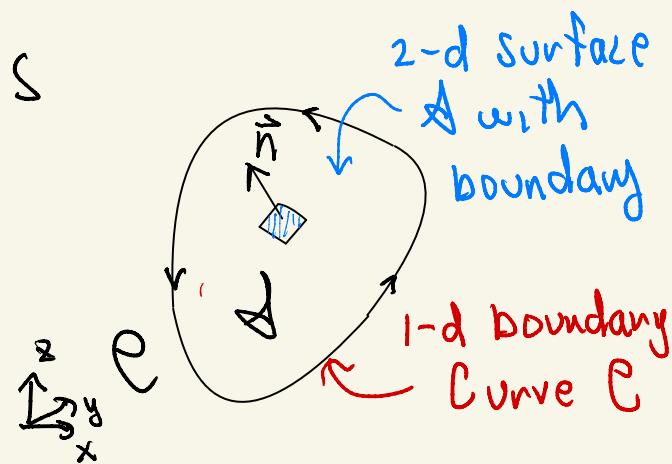
$$\iint_S \operatorname{Curl} \vec{F} \cdot \vec{n} \, dS = \int_C \vec{F} \cdot \vec{T} \, ds$$

Flux of $\operatorname{Curl} \vec{F}$ thru δ

2d-boundary
Surface S



3d-Volume V
inside



This reduces to Green's Thm in the special case when S reduces to a region R in xy -plane inside $sec C$ in plane

Green's Thm: $\iint_R \underbrace{N_x - M_y}_{\operatorname{Curl}(M, N, 0) \cdot (0, 0, 1)} \, dA = \int_C \vec{F} \cdot \vec{T} \, ds$

• Flux has a very important physical meaning.

Consider the fluid example -

A fluid particle P moves along curves $\vec{r}_P(t)$ called streamlines -

The fluid density $\delta(x, y, z) = \frac{\text{mass}}{\text{vol}}$ changes as the fluid "compresses" and "rarefies".

Q: Given a 2-d surface \mathcal{S} , what is the rate at which mass is passing thru \mathcal{S} ?

Ans: Flux $= \iint_{\mathcal{S}} \vec{F} \cdot \vec{n} dS = \frac{\text{Mass}}{\text{Time}} \text{ thru } \mathcal{S}$

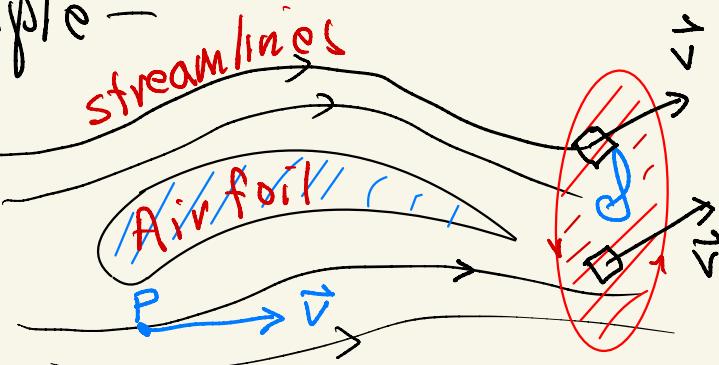
$\vec{F} = \delta \vec{v} = \text{mass flux vector}$.

Check dimensions $[\delta \vec{v}] = \frac{\text{mass}}{\text{vol}} \frac{\text{dist}}{\text{time}} = \frac{M}{L^3 T} = \frac{M}{L^2 T}$

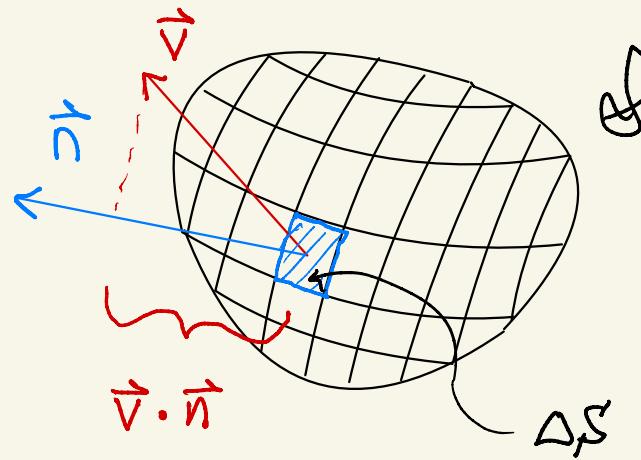
Conclude: $\delta \vec{v} = \frac{\text{mass}}{\text{area} \times \text{time}}$ moving

$\frac{\text{mass}}{\text{area} \times \text{time}}$

thru surface in direction \vec{v}



- Discretize \mathcal{V} into a grid of small areas ΔS



- Only the component of $\vec{v} \perp \Delta S$ contributes

to mass flow thru ΔS . This is $\vec{v} \cdot \vec{n}$

- $\delta \vec{v} \cdot \vec{n}$ = $\frac{\text{mass}}{\text{vol}} \frac{\text{dist}}{\text{time}}$ moving \perp to ΔS

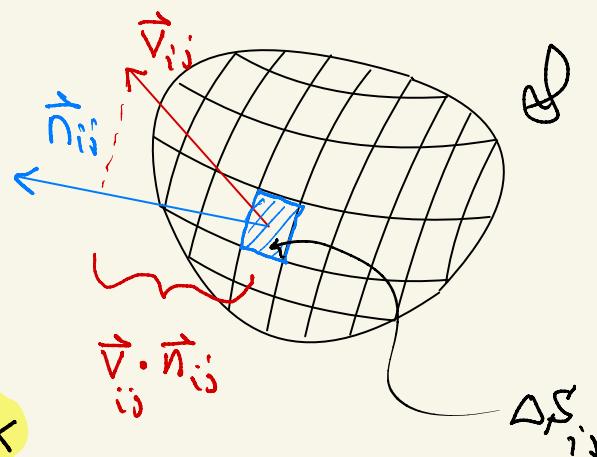
$$= \frac{\text{mass}}{\text{area time}} \text{ out thru } \Delta S$$

- $\delta \vec{v} \cdot \vec{n} \Delta S = \frac{\text{mass}}{\text{time}} \text{ out thru } \Delta S$

- $\frac{\text{Total Mass}}{\text{Time}} \approx \sum_{ij} \delta_{ij} \vec{v}_{ij} \cdot \vec{n}_{ij} \Delta S_{ij}$
- $\underbrace{\text{out thru } \mathcal{S}}$

$$\frac{\text{Total Mass}}{\text{Time}} = \lim_{N \rightarrow \infty} \sum_{ij} \delta_{ij} \vec{v}_{ij} \cdot \vec{n}_{ij} \Delta S_{ij}$$

$$= \iint_{\mathcal{S}} \delta \vec{v} \cdot \vec{n} dS = \text{Flux}$$



ΔS_{ij}

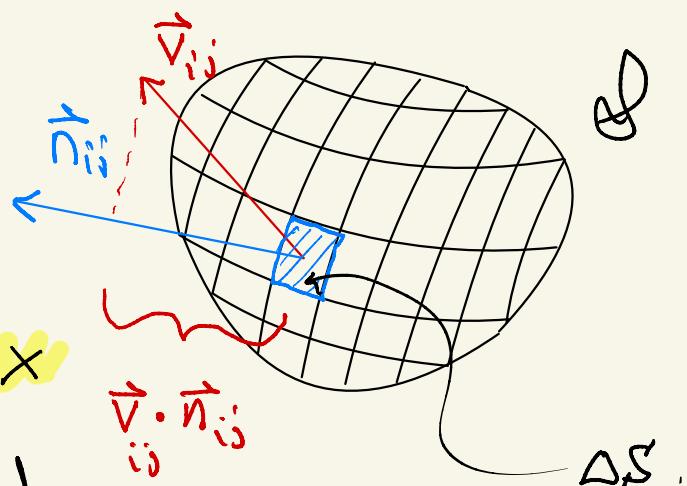
- The argument works for any density -
- $\delta = \frac{\text{charge}}{\text{vol}}$, $\frac{\text{contaminant}}{\text{vol}}$, $\frac{\text{"stuff"}}{\text{vol}}$
- assume its moving at velocity \vec{v}
- define $\delta \vec{v} = \text{"stuff" flux vector}$
- then the "Flux thru δ " is defined as

$$\iint_{\delta} \delta \vec{v} \cdot \vec{n} dS = \text{"rate at which stuff is passing thru } \delta \text{ in direction of normal } \vec{n} \text{"}$$

Precisely -

$$\frac{\text{Total Mass}}{\text{Time}} = \lim_{N \rightarrow \infty} \sum_{i,j} \delta_{ij} \vec{v}_{ij} \cdot \vec{n}_{ij} \Delta S_{ij}$$

$$= \iint_{\delta} \delta \vec{v} \cdot \vec{n} dS = \text{Flux}$$



To calculate this we need

to define the Riemann Sum in a coordinate system

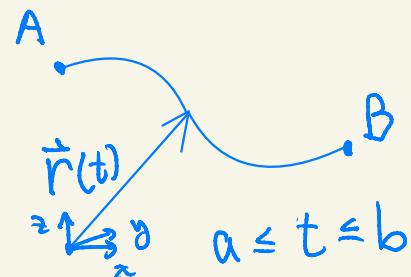
Calculating surface integrals - (5)

Turns out - there is a very natural way to define Flux integrals in terms of a coordinate system on the surface - analogous to coordinate systems on curves -

Defn: we call a coord system a parameterization

Recall:

$$\int_C \vec{F} \cdot \vec{T} \, ds = \int_a^b \vec{F} \cdot \vec{v} \, dt$$



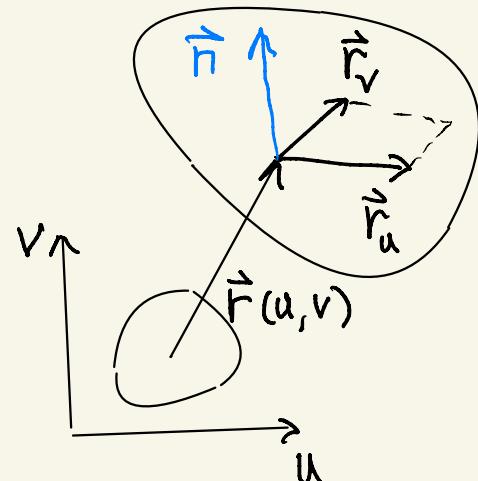
Similarly for surfaces -

$$\vec{r}(u, v) = (x(u, v), y(u, v), z(u, v))$$

$$\vec{r}_u = (x_u(u, v), y_u(u, v), z_u(u, v))$$

$$\vec{r}_v = (x_v(u, v), y_v(u, v), z_v(u, v))$$

$$\vec{n} = \frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|} = \text{unit normal}$$



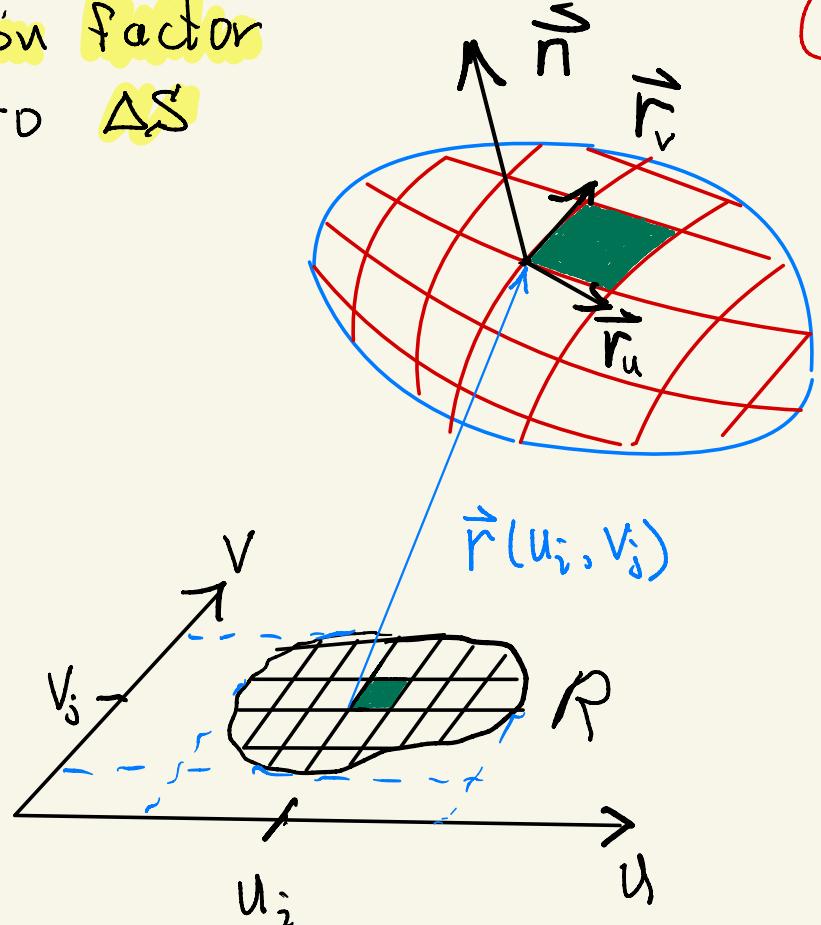
It remains to get the amplification factor -

Turns out: The amplification factor A that scales $\Delta u \Delta v$ to ΔS

$$\Delta S = A \Delta u \Delta v$$

is $A = \|\vec{r}_u \times \vec{r}_v\|$

From this fact we can compute a surface integral flux in a coordinate system:



$$\iint_S \vec{F} \cdot \vec{n} \, dS = \lim_{N \rightarrow \infty} \sum \vec{F}_{i,j} \cdot \vec{n}_{i,j} \Delta S_{i,j}$$

~~$\frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|} \|\vec{r}_u \times \vec{r}_v\| \Delta u \Delta v$~~

$$= \lim_{N \rightarrow \infty} \sum_{(u_i, v_j) \in R} \vec{F}_{i,j} \cdot \frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|} \frac{\|\vec{r}_u \times \vec{r}_v\| \Delta u \Delta v}{dA}$$

Riemann Sum in (u, v)

$$= \iint_R \vec{F} \cdot (\vec{r}_u \times \vec{r}_v) dA$$

A Chapter 15 integral over a region R in uv -plane

Summary -

Line Integral:

$$\int_C \vec{F} \cdot \vec{T} ds = \int_a^b \vec{F} \cdot \vec{v} dt$$

\uparrow

$\vec{r}(t): a \leq t \leq b$

Surface Integral:

$$\iint_S \vec{F} \cdot \vec{n} dS = \iint_R \vec{F} \cdot (\vec{r}_u \times \vec{r}_v) dA$$

\uparrow

$\vec{r}(u, v): (u, v) \in R$

The only step that needs justification is the amplification factor -

Q: Why is $dS = |\vec{r}_u \times \vec{r}_v| du dv$?

We first recall the cross-product.

Cross Product: $\vec{A} = (\vec{a}_1, \vec{a}_2, \vec{a}_3)$ $\vec{B} = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$ (8)

How to calculate it:

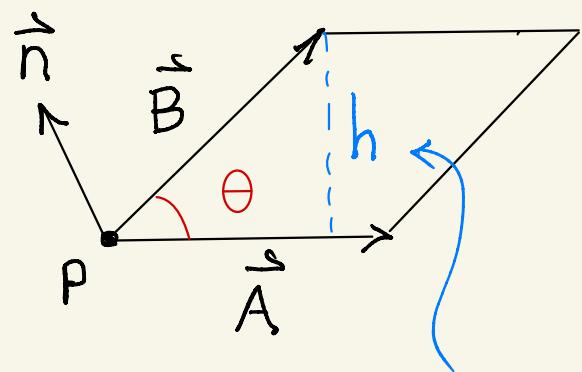
$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2 b_3 - a_3 b_2) \vec{i} - (a_1 b_3 - a_3 b_1) \vec{j} + (a_1 b_2 - a_2 b_1) \vec{k}$$

Geometric meaning:

$$\vec{A} \times \vec{B} = \|\vec{A}\| \|\vec{B}\| \sin \theta \vec{n}$$

$\underbrace{\hspace{10em}}_h$

Area of the parallelogram



parallelogram determined by \vec{A} and \vec{B}

Conclude: The cross product points in direction $\perp \vec{A} \times \vec{B}$ (direction by right hand rule) and has a length = area of parallelogram.

Now consider a curve C :

- At a point $\vec{r}(t)$ on a curve, the vector $\vec{T}ds$ points tangent to C , and has a length $ds = \vec{r}'(t) dt$

(ds is distance along tangent line, a good approximation to Δs along curve, when ds is small)

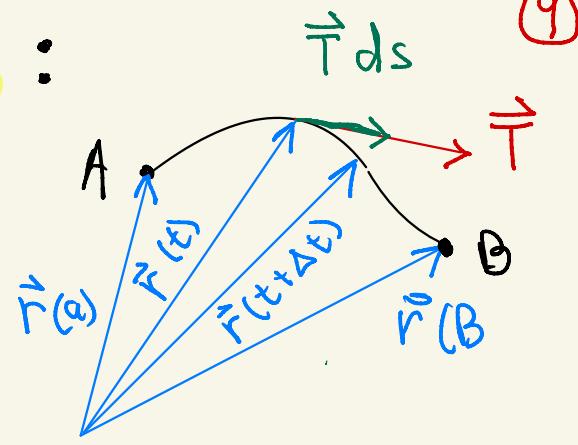
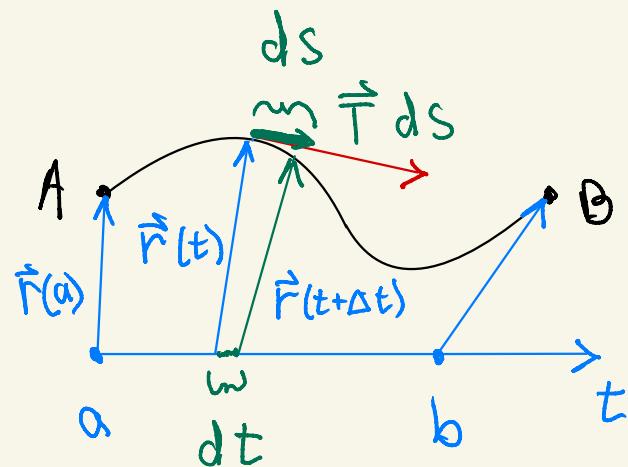
- Similarly: Given a surface $\vec{r}(u, v)$

$$\vec{r}_u du = \vec{T}_u ds$$

is the vector on the side of Δs tangent to curve $\vec{r}_v(u)$

$$\vec{r}_v du = \vec{T}_v ds$$

is the vector on the side of Δs tangent to curve $\vec{r}_u(v)$



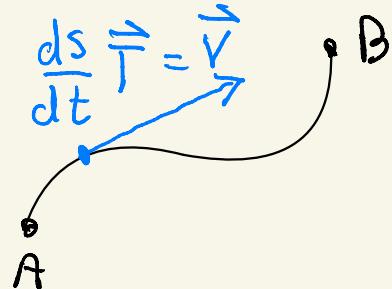
Explanation: Why $|\vec{r}_u \times \vec{r}_v|$ is the amplification factor for area I.e.,

$$dS = |\vec{r}_u \times \vec{r}_v| du dv$$

(1) First recall that for a curve $\vec{r}(t)$, we have $\|\vec{v}\| = \|\vec{r}'(t)\| = \frac{ds}{dt} \Rightarrow ds = \|\vec{r}'(t)\| dt$

thus $\frac{ds}{dt} \vec{T}$ is a vector

of length ds pointing tangent



(2) Similarly, $\vec{r}(u, v)$ parameterizes a surface - and at fixed v

$\vec{r}(u, v) = \vec{r}_v(u)$ is a curve with parameter u

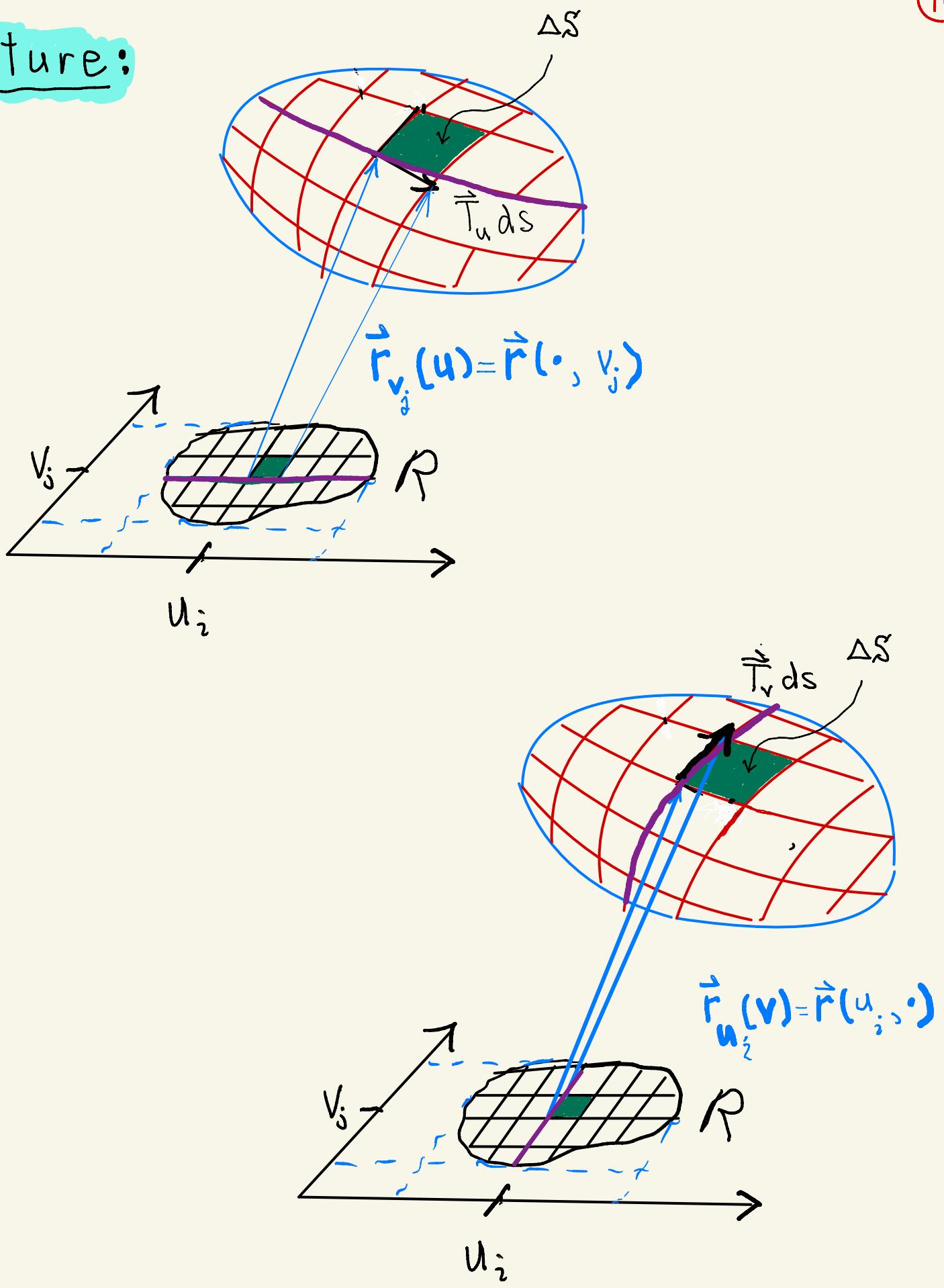
$\frac{\partial \vec{r}}{\partial u}(u, v) = \frac{d \vec{r}_v}{du} = \vec{T}_u ds$ is one side of $\|l\|$ -ogram ΔS

Same for v :

$\vec{r}(u, v) = \vec{r}_u(v)$ is a curve with parameter v

$\frac{\partial \vec{r}}{\partial v}(u, v) = \frac{d \vec{r}_u}{dv} = \vec{T}_v ds$ is the other side of $\|l\|$ -ogram ΔS

Picture:



(3)

$$\vec{r}_u \, du = \vec{T}_u \, ds$$

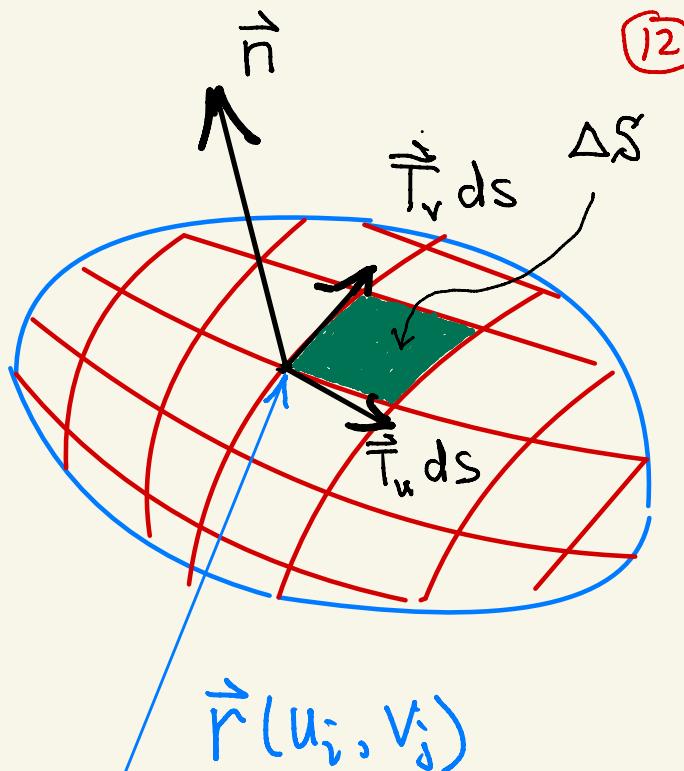
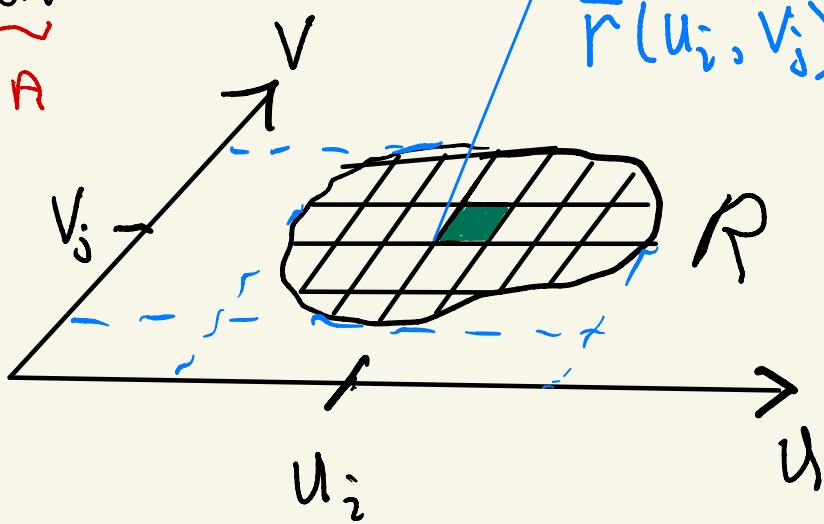
$$\vec{r}_v \, dv = \vec{T}_v \, ds$$

$$ds = \|\vec{T}_u \, ds \times \vec{T}_v \, ds\|$$

$$= \|\vec{r}_u \, du \times \vec{r}_v \, dv\|$$

$$= \|\vec{r}_u \times \vec{r}_v\| \, \underbrace{du \, dv}_{dA}$$

Amplification Factor for Area



Summary:

$$ds = \|\vec{r}_u \times \vec{r}_v\| \, \underbrace{du \, dv}_{dA}$$

so

$$\iint \vec{F} \cdot \vec{n} \, ds = \iint_{R_{uv}} \vec{F} \cdot \frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|} \, \|\vec{r}_u \times \vec{r}_v\| \, dA$$

$$= \iint_{R_{uv}} \vec{F} \cdot \vec{r}_u \times \vec{r}_v \, dA$$

$$= \iint_{R_{uv}} \vec{F} \cdot \vec{r}_u \times \vec{r}_v \, dA$$

12

(13)

Example: Assume a surface \mathcal{S} is given by

$$\vec{r}(u, v) = \overrightarrow{(u-v, u+v, u+2v)} \quad \begin{aligned} 0 &\leq u \leq 1 \\ 0 &\leq v \leq 2 \end{aligned}$$

$x(u, v) \quad y(u, v) \quad z(u, v)$

Assume a density $\delta(x, y, z) = x \frac{\text{kg}}{\text{m}^3}$ is moving thru the surface at velocity $\vec{v} = \overrightarrow{y(1, 2, 1)} \cdot \frac{\text{m}}{\text{s}}$

Find the rate and direction at which mass is passing thru the surface.

Soln: $\vec{F} = \delta \vec{v} = xy \overrightarrow{(1, 2, 1)}$ is the mass flux vector

Flux = $\iint_{\mathcal{S}} \vec{F} \cdot \vec{n} \, dS = \frac{\text{mass}}{\text{time}}$ thru \mathcal{S} in direction of normal vector \vec{n} .

$$\vec{r}_u = \frac{\partial \vec{r}}{\partial u} = \frac{\partial}{\partial u} \overrightarrow{(u-v, u+v, u+2v)} = \overrightarrow{(1, 1, 1)}$$

$$\vec{r}_v = \frac{\partial \vec{r}}{\partial v} = \frac{\partial}{\partial v} \overrightarrow{(u-v, u+v, u+2v)} = \overrightarrow{(-1, 1, 2)}$$

$$\vec{r}_u \times \vec{r}_v = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{vmatrix} = \hat{i}(2-1) - \hat{j}(2-(-1)) + \hat{k}(1-(-1)) \\ = \hat{i} - 3\hat{j} + 2\hat{k} = \overrightarrow{(1, -3, 2)}$$

$$\hat{n} = \frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|} = \frac{\overrightarrow{(1, -3, 2)}}{\sqrt{1^2 + (-3)^2 + 2^2}} = \frac{1}{\sqrt{14}} \overrightarrow{(1, -3, 2)}$$

↑
positive

Since z-component of $\hat{n} > 0$, this is upward normal

$$\iint_S \vec{F} \cdot \hat{n} \, dS = \iint_{R_{uv}} xy \overrightarrow{(1, 2, 1)} \frac{1}{\sqrt{14}} \overrightarrow{(1, -3, 2)} \sqrt{14} \, dA$$

R_{uv} \vec{F} \hat{n} dA

$$x = u-v, y = u+v$$

$$= \iint_0^2 \int_0^1 (u-v)(u+v) (1-6+2) \, du \, dv = \iint_{R_{uv}} \vec{F} \cdot \vec{r}_u \times \vec{r}_v \, dA$$

$$= -3 \int_0^2 \int_0^1 u^2 - v^2 \, du \, dv = -3 \int_0^2 \left[\frac{u^3}{3} - v^2 u \right]_{u=0}^{u=1} \, dv = -3 \int_0^2 \frac{1}{3} - v^2 \, dv$$

$$= -3 \left[\frac{1}{3}v - \frac{v^3}{3} \right]_{v=0}^{v=2} = -3 \left[\left(\frac{2}{3} - \frac{8}{3} \right) - 0 \right] = 6 \frac{k\alpha}{5} > 0$$

⇒ upward thru ✓